skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yang, Je-han"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Due to high impact forces and low duty cycles, monopedal jumping robots are particularly susceptible to failure from a slipping foot. Spines provide a solution to reduce slip, but there has been little research on how to effectively engage them into a surface with a dynamic jumping robot. Previous robots utilizing spines operate in different regimes of surface approach speed and cycle time. For a penetrable substrate, spines must be directed into the surface at suitable holding angles, then extracted before the foot leaves the ground. We accomplished this by designing a gripper mechanism for the robot Salto that pushes in angled spines along their length and is kinematically constrained to engage/disengage with leg crouch/extension. The resulting mechanism introduces no new actuators, enables jumping on penetrable inclines up to 60 degrees and enables static adhesion to hold 7.5 times the robot’s weight from a ceiling. 
    more » « less